Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447062

RESUMO

Bolboschoenus planiculmis (F.Schmidt) T.V.Egorova is a typical wetland plant in the species-rich Cyperaceae family. This species contributes prominently to carbon dynamics and trophic integration in wetland ecosystems. Previous studies have reported that the chromosomes of B. planiculmis are holocentric; i.e. they have kinetic activity along their entire length and carry multiple centromeres. This feature was suggested to lead to a rapid genome evolution through chromosomal fissions and fusions and participate to the diversification and ecological success of the Bolboschoenus genus. However, the specific mechanism remains uncertain, partly due to the scarcity of genetic information on Bolboschoenus. We present here the first chromosome-level genome assembly for B. planiculmis. Through the integration of high-quality long-read and short-read data, together with chromatin conformation using Hi-C technology, the ultimate genome assembly was 238.01 Mb with a contig N50 value of 3.61 Mb. Repetitive elements constituted 37.04% of the genome, and 18,760 protein-coding genes were predicted. The low proportion of long terminal repeat retrotransposons (∼9.62%) was similar to that reported for other Cyperaceae species. The Ks (synonymous substitutions per synonymous site) distribution suggested no recent large-scale genome duplication in this genome. The haploid assembly contained a large number of 54 pseudochromosomes with a small mean size of 4.10 Mb, covering most of the karyotype. The results of centromere detection support that not all the chromosomes in B. planiculmis have multiple centromeres, indicating more efforts are needed to fully reveal the specific style of holocentricity in cyperids and its evolutionary significance.


Assuntos
Cyperaceae , Ecossistema , Cromossomos , Centrômero/genética , Cariótipo , Cromatina , Cyperaceae/genética , Filogenia
2.
Food Funct ; 14(23): 10347-10361, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37930368

RESUMO

Liver fibrosis (LF) is an important reparative process in response to acute or chronic hepatic injury, which has the potential to advance towards cirrhosis and hepatocellular carcinoma. Dietary naringin consumption contributes to protection against LF in animal studies, while the exact protective mechanism of naringin remains unclear. This study aimed to investigate the molecular mechanisms behind the potential protective effect of naringin against TAA-induced LF in zebrafish. In this study, we utilized zebrafish to create the LF model and investigate the therapeutic mechanism of naringin. Firstly, we evaluated the changes in hepatic fibrosis and lipid accumulation in the liver following naringin treatment with oil red O, Nile red, and Sirius red and immunohistochemistry. In addition, we employed an ROS probe to directly measure oxidative stress and monitor inflammatory cell migration in a zebrafish transgenic line. Morpholino was used in the knockdown of IDO1 in order to verify its vital role in LF. Our findings demonstrated that naringin exhibited anti-inflammatory and anti-fibrotic action in conjunction with a reversal in lipid accumulation, oxidative stress and suppression of macrophage infiltration and activation of hepatic stellate cells. Furthermore, the results showed that the antifibrotic effect of naringin was removed upon IDO1 knockdown, proving that naringin exerts a protective effect by regulating IDO1. Naringin demonstrates remarkable protective effects against LF, effectively counteracting inflammation and hepatic steatosis in zebrafish liver. These findings suggest that naringin may function as an effective IDO1 inhibitor, holding the potential for clinical translation as a therapeutic agent for the treatment of LF.


Assuntos
Metabolismo dos Lipídeos , Peixe-Zebra , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Lipídeos/farmacologia
3.
Fungal Biol ; 127(9): 1284-1290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37821150

RESUMO

Peroxin 14 (Pex14) is a component of the receptor-docking complex at peroxisomal membrane. However, its post translation modification remains largely unknown in filamentous fungi. In this study, we characterized two phosphorylation sites (S54 and T262) in Beauveria bassiana Pex14 (BbPex14). Two phosphorylation sites are dispensable for the BbPex14 role as a peroxin. The BbPex14 roles in conidiation and blastospore formation are dependent on two phosphorylation sites, and blastospore formation is more dependent on phosphorylation modification of two sites. Two phosphorylation sites differentially contribute to pexophagy during conidiation and under stress, in which the site T262 is indispensable. Evidently, the phosphorylation modification expands the functionalities of BbPex14. This study improves our understandings of the complex regulatory mechanisms underlying organellar biology in the filamentous fungi.


Assuntos
Beauveria , Beauveria/genética , Beauveria/metabolismo , Fosforilação , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
J Clin Transl Hepatol ; 11(3): 540-549, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36969885

RESUMO

Background and Aims: Chronic active Epstein-Barr virus hepatitis (CAEBVH) is a rare and highly lethal disease characterized by hepatitis and hepatomegaly. This study aimed to investigate the clinicopathological features and pathogenic mechanisms of CAEBVH. Methods: Ten patients with confirmed Epstein-Barr virus hepatitis infection were enrolled. The clinicopathological characteristics of these patients were summarized and analyzed. Flow cytometry was utilized to detect peripheral blood immune cell phenotypes and whole exome sequencing was used to explore pathogenic genetic mechanisms. Lastly, immunohistochemical staining was employed to verify pathogenic mechanisms. Results: Clinical features observed in all Epstein-Barr virus hepatitis patients included fever (7/10), splenomegaly (10/10), hepatomegaly (9/10), abnormal liver function (8/10), and CD8+ T cell lymphopenia (6/7). Hematoxylin and eosin staining revealed lymphocytic infiltration in the liver. Positive Epstein-Barr virus-encoded small RNA in-situ hybridization (EBER-ISH) of lymphocytes of liver tissues was noted. Whole exome sequencing indicated that cytotoxic T lymphocytes and the complement system were involved. The expression of CD8, Fas, FasL, and Caspase-8 expression as well as apoptotic markers was enhanced in the Epstein-Barr virus hepatitis group relative to the controls (p<0.05). Lastly, Complement 1q and complement 3d expression, were higher in CAEBVH patients relative to controls (p<0.05). Conclusions: CAEBVH patients developed fever, hepatosplenomegaly, and lymphadenopathy. Histopathological changes were a diffuse lymphocytic sinusoidal infiltrate with EBER-ISH positivity. Fas/FasL and complement activation were involved in CAEBVH patients.

5.
mBio ; 14(2): e0304922, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809079

RESUMO

Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana. Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.


Assuntos
Beauveria , Esporos Fúngicos/metabolismo , Beauveria/genética , Beauveria/metabolismo , Ecossistema , Glutamil Aminopeptidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo
6.
J Hepatocell Carcinoma ; 10: 2367-2382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164511

RESUMO

Background: PVTT is a hallmark of advanced hepatocellular carcinoma (HCC). We aim to explore the influence of non-invasive biomarkers on the occurrence of PVTT and develop and validate models for predicting prognosis in HBV-related HCC patients without PVTT. Methods: A total of 1026 HBV-related HCC patients without PVTT were enrolled, with 515 in the training cohort, 216 in the internal validation cohort, and 295 in the external validation cohort. We conducted Cox regression analyses to discern the independent risk factors associated with PVTT events, PFS, and OS, then constructed and validated predictive models. The predictive and discriminatory capabilities of models were assessed using the calibration, time-dependent ROC, and DCA curves. Results: In our study, 136 patients (13.3%) experienced PVTT events during the follow-up period. The Cox regression analysis unveiled that male gender, AAPR ≤0.49, APRI >0.48, extrahepatic metastasis, and multiple tumors were independent risk factors for PVTT. In the training cohort, non-invasive biomarkers (AAR and APRI), AFP, ascites, and tumor-related characteristics (extrahepatic metastasis, tumor diameter, tumor number, and PVTT event) were independent risk factors for both OS and PFS, whereas age and ALBI grade independently correlated with OS. The C-indexes of OS and PFS nomogram models were 0.795 and 0.733 in the training cohort, 0.765 and 0.716 in the internal validation cohort, and 0.780 and 0.722 in the external validation cohort, respectively. Our models demonstrated strong predictive and discriminative abilities in all cohorts and yielded a greater net benefit compared to three traditional staging systems. Conclusion: Non-invasive biomarkers are expected to be reliable predictors for assessing PVTT risk and predicting prognosis among HBV-related HCC patients without PVTT.

7.
Front Genet ; 14: 1326737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38343446

RESUMO

Background: Tousled-like kinase 2 (TLK2) is integral to DNA repair, replication, and cell cycle regulation, crucial for maintaining genome stability and integrity. However, the expression and prognostic value of TLK2 in hepatitis B viral (HBV) -related hepatocellular carcinoma (HCC) remains unclear. Methods: We examined TLK2 expression and prognostic implications in pan-cancer by using diverse databases. Subsequently, TLK2 expression in HBV-related HCC tissues and adjacent tissues was assessed using quantitative real-time PCR and immunohistochemistry. The prognostic value of TLK2 was assessed through ROC curves, time-dependent ROC curves, Cox regression, Kaplan-Meier curve, and decision curve analysis. Additionally, analyses of immune infiltration, protein-protein interactions, key molecules of tumor-related signaling pathways, molecular subtypes, and TLK2-associated differentially expressed genes (DEGs) were conducted, along with GO/KEGG and GSEA enrichment analyses. Results: TLK2 expression was significantly higher in HCC tissues compared to adjacent tissues and correlated with gender, AFP levels, albumin-bilirubin (ALBI) grade, microvascular invasion (MVI), maximum tumor diameter, tumor number, and TNM stage. TLK2 overexpression emerged as an independent risk factor for overall survival (OS) and recurrence-free survival (RFS) in HBV-related HCC patients. An integrated OS nomogram model, incorporating TLK2, age, ALBI grade, MVI, and tumor number, displayed enhanced prognostic capability (C-index: 0.765, 95% CI: 0.732-0.798) in predicting OS and has a higher net benefit than the TNM stage. Moreover, TLK2 expression correlated closely with immune cell infiltration and key molecules of signaling pathways. Functional enrichment analyses highlighted significant associations with DNA duplex unwinding, double-strand break repair, DNA replication, cell cycle, E2F targets, G2M checkpoint, and MYC targets V1. Conclusion: TLK2 is notably overexpressed in HBV-related HCC and emerges as a promising prognostic biomarker, necessitating further validation.

8.
Arch Microbiol ; 204(10): 653, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175799

RESUMO

Acetyl-coenzyme A (CoA) synthetase (Acs) links cellular metabolism and physiology by catalyzing acetate and CoA into acetyl-CoA. However, the biological roles of Acs are not well studied in entomopathogenic fungi. In this study, two Acs proteins (BbAcs1 and BbAcs2) was functionally characterized in the filamentous insect pathogenic fungus Beauveria bassiana. BbAcs1 and BbAcs2 localize in cytoplasm and peroxisome, respectively. BbAcs1 contributes to vegetative growth on fatty acids as carbon source, and BbAcs2 did not. Both genes did not contribute to fungal response to stresses. The BbAcs1 loss conferred a slight influence on conidiation, and did not result in the defects in blastospore formation. On the contrary, BbAcs2 significantly contributes to lipid metabolism in germlings, blastospore formation, and virulence. The results indicated that Acs2 played a more predominant role than Acs1 in B. bassiana, which links the acetyl-CoA metabolism with the lifestyle of entomopathogenic fungi.


Assuntos
Beauveria , Saccharomyces cerevisiae , Acetato-CoA Ligase/genética , Acetilcoenzima A , Beauveria/genética , Carbono , Coenzima A Ligases/genética , Ácidos Graxos
10.
Environ Microbiol ; 24(8): 3693-3704, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35523457

RESUMO

Common in fungal extracellular membrane (CFEM) domain is unique in fungal proteins and some of which contribute to iron acquisition in yeast. However, their roles in iron acquisition remain largely unknown in filamentous fungi. In this study, 12 CFEM-containing proteins were bioinformatically identified in the filamentous entomopathogenic fungus Beauveria bassiana, and the roles of 11 genes were genetically characterized. Transmembrane helices were critical for their association with intracellular membranes, and their number varied among proteins. Eleven CFEM genes significantly contribute to vegetative growth under iron starvation and virulence. Notably, the virulence of most disruptants could be significantly weakened by a decrease in iron availability, in which the virulence of ΔBbcfem7 and 8 strains was partially recovered by exogenous hemin. ΔBbcfem7 and 8 mutants displayed defective competitiveness against the sister entomopathogenic fungus Beauveria brongniartii. All 11 disruptants displayed impaired growth in the antagonistic assay with the saprotrophic fungus Aspergillus niger, which could be repressed by exogenous ferric ions. These findings not only reveal the systematic contributions of CFEM proteins to acquire two forms of iron (i.e. heme and ferric ion) in the entire lifecycle of entomopathogenic fungi but also help to better understand the mechanisms of fungus-host and inter-fungus interactions.


Assuntos
Beauveria , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Esporos Fúngicos/metabolismo , Virulência/genética
11.
mSystems ; 7(1): e0146321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133188

RESUMO

Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.


Assuntos
Proteínas Relacionadas à Autofagia , Beauveria , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Insetos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Proteômica , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
Pancreas ; 51(8): 1000-1006, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607946

RESUMO

OBJECTIVES: To date, the complete natural history of pancreatic steatosis is unknown. This study aimed to investigate the association of fatty pancreas (FP) in the incidence of metabolic syndrome and its components among Chinese patients with a 5-year follow-up. METHODS: Three independent cross-sectional surveys were carried out in 2013, 2015, and 2018. Fatty pancreas was diagnosed via transabdominal sonography. Logistic regression analysis was used to estimate the correlation between FP and metabolic syndrome. New cases of metabolic syndrome and its components were estimated by Cox proportional hazards models. RESULTS: At baseline, 12,551 individuals classified into FP (n = 1010) and non-FP (n = 11,541) groups were finally enrolled. In cross-sectional analyses, odds ratio of FP was 2.378 (95% confidence interval [CI], 2.085-2.713; P < 0.001). In longitudinal analyses, FP was associated with the occurrence of metabolic syndrome (hazard ratio [HR], 3.179; 95% CI, 2.197-4.6; P < 0.001), type 2 diabetes mellitus (HR, 13.99; 95% CI, 7.865-24.883; P < 0.001), nonalcoholic fatty liver disease (HR, 31.843; 95% CI, 7.73-131.171; P < 0.001), and hypertension (HR, 12.801; 95% CI, 7.323-22.38; P < 0.001). CONCLUSIONS: Pancreatic steatosis is strongly associated with the occurrence of metabolic syndrome and its components such as hypertension and diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Síndrome Metabólica , Pancreatopatias , Humanos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/diagnóstico , Seguimentos , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Estudos Transversais , População do Leste Asiático , Pancreatopatias/diagnóstico por imagem , Pancreatopatias/epidemiologia , Pancreatopatias/complicações
13.
Fungal Genet Biol ; 158: 103651, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906632

RESUMO

Sterol carrier protein 2 (SCP2) represents a family of proteins binding a variety of lipids and plays essential roles in cellular physiology. However, its physiological roles are largely unknown in filamentous fungi. In this study, we functionally characterized an orthologous Scp2 gene in the filamentous insect pathogenic fungus Beauveria bassiana (BbScp2). BbScp2 was verified to be a peroxisomal protein and displayed different affinities to various lipids, with strong affinity to palmitic acid (PA) and ergosterol (ES). No significant binding activity was detected between protein and oleic acid (OA) or linoleic acid (LA). Ablation of BbScp2 did not cause significant effects on fungal growth on various carbon sources, but resulted in a modest reduction in conidial (49%) and blastospore yield (45%). In addition, exogenous lipids could recover the defectives in conidiation of ΔBbScp2 mutant strain. BbScp2 was required for the cytomembrane functionality in germlings, and its loss resulted in a more significant decrease in virulence indicated by cuticle infection assay than intrahemocoel injection assay. Our findings indicate that Scp2 links the lipid trafficking to the asexual differentiation and virulence of B. bassiana.


Assuntos
Beauveria , Animais , Beauveria/genética , Proteínas de Transporte , Proteínas Fúngicas/genética , Insetos , Lipídeos , Esporos Fúngicos/genética , Virulência/genética
14.
J Appl Microbiol ; 132(1): 509-519, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34260798

RESUMO

AIMS: Peroxins Pex5 and Pex7 belong to the peroxisomal import machinery and recognize proteins containing peroxisomal targeting signal (PTS) type 1 and type 2, respectively. This study seeks to characterize these two peroxins in the entomopathogenic fungus Beauveria bassiana. METHODS AND RESULTS: The orthologs of Pex5 and Pex7 in B. bassiana (BbPex5 and BbPex7) were functionally analyzed via protein localization and gene disruption. BbPex5 and BbPex7 were associated with peroxisome and specifically required for PTS1 and PTS2 pathways, respectively, which were demonstrated to be involved in development, tolerance to oxidative stress and virulence. ΔBbPex5 mutant displayed additionally defectives that were undetected in ΔBbPex7 in vegetative growth and resistance to osmotic and cell wall-perturbing stresses. Notably, Woronin body major protein Hex1 with PTS1 linked this organelle to the development and virulence of B. bassiana, which indicates that Woronin body is associated with the roles of PTS1 pathway. CONCLUSION: Both PTS1 and PTS2 pathways are involved in broad physiological process, and the PTS1 pathway acts as a main peroxisomal import pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the functional divergence of different peroxins and improves our understanding of organellar physiology involved in biocontrol potential of the entomopathogenic fungi.


Assuntos
Beauveria , Animais , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insetos , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/genética , Virulência
15.
J Med Virol ; 94(1): 357-365, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34542195

RESUMO

COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.


Assuntos
Análise Química do Sangue , COVID-19/classificação , Redes Neurais de Computação , Índice de Gravidade de Doença , Máquina de Vetores de Suporte , Área Sob a Curva , COVID-19/sangue , COVID-19/diagnóstico , Testes Hematológicos , Humanos , Modelos Logísticos , SARS-CoV-2
16.
Fungal Biol ; 125(11): 914-922, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649678

RESUMO

Lectins are characterized of the carbohydrate-binding ability and play comprehensive roles in fungal physiology (e.g., defense response, development and host-pathogen interaction). Beauveria bassiana, a filamentous entomopathogenic fungus, has a lectin-like protein containing a Fruit Body_domain (BbLec1). BbLec1 could bind to chitobiose and chitin in fungal cell wall. BbLec1 proteins interacted with each other to form multimers, and translocated into eisosomes. Further, the interdependence between BbLec1 and the eisosome protein PliA was essential for stabilizing the eisosome architecture. To test the BbLec1 roles in B. bassiana, we constructed the gene disruption and complementation mutants. Notably, the BbLec1 loss resulted in the impaired cell wall in mycelia and conidia as well as conidial formation capacity. In addition, disruption of BbLec1 led to the reduced cytomembrane integrity and the enhanced sensitivity to osmotic stress. Finally, ΔBbLec1 mutant strain displayed the weakened virulence when compared with the wild-type strain. Taken together, BbLec1 traffics into eisosome and links the functionality of eisosome to development and virulence of B. bassiana.


Assuntos
Beauveria , Animais , Beauveria/genética , Parede Celular , Proteínas Fúngicas/genética , Insetos , Lectinas , Esporos Fúngicos , Virulência
17.
Biology (Basel) ; 10(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571744

RESUMO

We identified 18 distinct Fox genes in the genome of the brown planthopper, Nilaparvata lugens, and further found a novel insect-specific subfamily that we temporarily named FoxT. A total of 16 genes were highly expressed in the eggs, while NlFoxL2 and NlFoxT are female- and male-specific genes, respectively. Large scale RNAi and RNA-seq analyses were used to reveal the functions and potential targets of NlFoxs. In the eggs, NlFoxA, NlFoxN1 and NlFoxN2 are indispensable to early embryogenesis by regulating different target genes; NlFoxG and NlFoxQ co-regulate NlSix3 for brain development; and NlFoxC, NlFoxJ1 and NlFoxP have complementary effects on late embryogenesis. Moreover, NlFoxA, NlFoxNl and NlFoxQ have pleiotropism. NlFoxA and NlFoxQ regulate the expression of NlCHS1 and cuticular proteins, respectively, thereby participating in the formation of cuticles. NlFoxN1, which regulates the expression of NlKrt9 is involved in the formation of intermediate filament frameworks. Our previous studies have revealed that NlFoxL2 and NlFoxO play important roles in chorion formation and wing polyphenism. Altogether, N. lugens Fox genes exhibit functional diversity in embryonic development and organogenesis. This comprehensive study combines genomics, transcriptomics and phenomics, thereby constructing a complex genetic network that spans the entire life cycle of the brown planthopper.

18.
Front Pharmacol ; 12: 670081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305590

RESUMO

Pyroptosis is a form of programmed cell death, in which gasdermin E (GSDME) plays an important role in cancer cells, which can be induced by activated caspase-3 on apoptotic stimulation. Triclabendazole is a new type of imidazole in fluke resistance and has been approved by the FDA for the treatment of fascioliasis and its functions partially acting through apoptosis-related mechanisms. However, it remains unclear whether triclabendazole has obvious anti-cancer effects on breast cancer cells. In this study, to test the function of triclabendazole on breast cancer, we treated breast cancer cells with triclabendazole and found that triclabendazole induced lytic cell death in MCF-7 and MDA-MB-231, and the dying cells became swollen with evident large bubbles, a typical sign of pyroptosis. Triclabendazole activates apoptosis by regulating the apoptoic protein levels including Bax, Bcl-2, and enhanced cleavage of caspase-8/9/3/7 and PARP. In addition, enhanced cleavage of GSDME was also observed, which indicates the secondary necrosis/pyroptosis is further induced by active caspase-3. Consistent with this, triclabendazole-induced GSDME-N-terminal fragment cleavage and pyroptosis were reduced by caspase-3-specific inhibitor (Ac-DEVD-CHO) treatment. Moreover, triclabendazole induced reactive oxygen species (ROS) elevation and increased JNK phosphorylation and lytic cell death, which could be rescued by the ROS scavenger (NAC), suggesting that triclabendazole-induced GSDME-dependent pyroptosis is related to the ROS/JNK/Bax-mitochondrial apoptotic pathway. Besides, we showed that triclabendazole significantly reduced the tumor volume by promoting the cleavage of caspase-3, PARP, and GSDME in the xenograft model. Altogether, our results revealed that triclabendazole induces GSDME-dependent pyroptosis by caspase-3 activation at least partly through augmenting the ROS/JNK/Bax-mitochondrial apoptotic pathway, providing insights into this on-the-market drug in its potential new application in cancer treatment.

19.
J Cell Mol Med ; 25(16): 7690-7708, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145738

RESUMO

The maternal-foetal interface is an immune-privileged site where the semi-allogeneic embryo is protected from attacks by the maternal immune system. Uterine macrophages are key players in establishing and maintaining pregnancy, and the dysregulation of the M1-M2 subpopulation balance causes abortion. We separated two distinct mouse uterine macrophage subpopulations during early pregnancy, CD45+ F4/80+ CD206- M1-like (M1) and CD45+ F4/80+ CD206+ M2-like (M2) cells. The M1 preponderance was significantly exaggerated at 6 hours after lipopolysaccharide (LPS) treatment, and adoptive transfer of M2 macrophages partially rescued LPS-induced abortion. RNA sequencing analysis of mouse uterine M2 versus M1 revealed 1837 differentially expressed genes (DEGs), among which 629 was up-regulated and 1208 was down-regulated. Histone deacetylase 9 (Hdac9) was one of the DEGs and validated to be significantly up-regulated in uterine M2 as compared with M1. Remarkably, this differential expression profile between M1 and M2 was also evident in primary splenic macrophages and in vitro polarized murine peritoneal, bone marrow-derived and RAW 264.7 macrophages. In Hdac9/HDAC9 knockout RAW 264.7 and human THP-1-derived macrophages, the expression of M1 differentiation markers was unchanged or decreased whereas M2 markers were increased compared with the wild-type cells, and these effects were unrelated to compromised proliferation. Furthermore, Hdac9/HDAC9 ablation significantly enhanced the phagocytosis of fluorescent microspheres in M2 Raw 264.7 cells yet decreased the capacity of THP-1-derived M1 macrophages. The above results demonstrate that Hdac9/HDAC9 deficiency exaggerates M2 macrophage polarization in mouse and human macrophages, which may provide clues for our understanding of the epigenetic regulation on macrophage M1/M2 polarization in maternal-foetal tolerance.


Assuntos
Feto/imunologia , Histona Desacetilases/fisiologia , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Proteínas Repressoras/fisiologia , Útero/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Perfilação da Expressão Gênica/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Útero/efeitos dos fármacos , Útero/metabolismo
20.
Sci Rep ; 11(1): 10036, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976344

RESUMO

Triglyceride glucose (TyG) index and inflammatory markers are reported to have a positive association with metabolic syndrome (MetS). However, no previous study has assessed the value of TyG index and inflammatory markers as predictors of metabolic syndrome in the same study. This study looks at the comparison of the triglyceride index and blood leukocyte indices as predictors of metabolic syndrome in the Chinese population. The study cohort involved 1542 Chinese population without metabolic syndrome. The subjects underwent comprehensive routine health examination in 2011 and returned for a follow-up examination in 2016. Metabolic syndrome was defined according to Chinese Diabetes Society criteria, using body mass index for the replacement of waist circumference. TyG index, total leukocytes, neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio (NLR) were measured. Adjust d logistic models were used to assess the relationship between TyG index, blood leukocyte indices, and incident MetS. Receiver operating characteristic (ROC) curves were performed to determine the predictive value of TyG index and blood leukocyte indices for MetS. Results from multivariate logistic regression analysis showed that, in the adjusted model, the subjects with the highest quartile of TyG index and neutrophils had a 3.894- and 1.663-fold increased incidence of MetS (P < 0.0001 and P = 0.027), respectively. No significant association was observed between total leukocytes, lymphocytes, NLR with incident MetS. ROC analysis showed that the AUC of TyG index and neutrophils were 0.674 and 0.568 for incident MetS, respectively. TyG index rather than blood leukocyte indices may have the strongest predictive value in MetS development over a 5-year period.


Assuntos
Glicemia , Síndrome Metabólica/sangue , Triglicerídeos/sangue , Adulto , Povo Asiático/estatística & dados numéricos , Feminino , Humanos , Contagem de Leucócitos , Masculino , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...